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Abstract—We study how to design edge server placement and
server scheduling policies under workload uncertainty for 5G
networks. We introduce a new metric called resource pooling
Jfactor to handle unexpected workload bursts. Maximizing this
metric offers a strong enhancement on top of robust optimiza-
tion against workload uncertainty. Using both real traces and
synthetic traces, we show that the proposed server placement and
server scheduling policies not only demonstrate better robustness
against workload uncertainty than existing approaches, but also
significantly reduce the cost of service providers. Specifically,
in order to achieve close-to-zero workload rejection rate, the
proposed server placement policy reduces the number of required
edge servers by about 25% compared with the state-of-the-
art approach; the proposed server scheduling policy reduces
the energy consumption of edge servers by about 13% without
causing much impact on the service quality.

Index Terms—Edge Computing, Server Placement, Server
Scheduling, Robust, Workload Uncertainty

I. INTRODUCTION

We study the edge server placement problem for 5G net-
works in this paper. By moving storage, compute, control, etc.,
closer to the network edge, Edge Computing (EC) could offer
higher bandwidth, lower latency and better security to users,
and thus has become a key enabling technology for 5G. As
5G takes off, deploying edge computing servers also becomes
a priority for service providers.

The key challenge of edge server placement in 5G networks
comes from workload uncertainty. SG adopts small-cell de-
ployment to allow end users to communicate at high data rate
using millimeter wave. However, as the cell size reduces, the
number of users served by each base station decreases and
thus the aggregated workload at each base station becomes
highly variable. One possible solution to handle such workload
uncertainty is to over-provision edge computing resources
based on the peak workload of all base stations. However, this
approach not only incurs high deployment and energy cost, but
also leads to low average resource utilization.

Most server placement literature [1]-[13] does not account
for workload uncertainty explicitly. In general, these server
placement proposals take a predicted edge workload vector as
input, and compute server placement solutions with optimal
expenditure, optimal access delay, or minimal energy con-
sumption. However, we cannot keep updating server placement
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based on the real-time workload. When real-time workload
patterns deviate from predictions, the performance guarantee
offered by these proposals become questionable. Some recent
works [14]-[17] studied how to design edge server placement
policies that are robust to server failures. However, workload
uncertainty is inherently different from server failures, and
thus may need completely new handling mechanisms.

Handling workload uncertainty is a challenging task. One

may use stochastic optimization to handle workload uncer-
tainty. However, this approach requires knowing the detailed
distribution of the random workload beforehand, which can
be extremely difficult to obtain. Further, this approach may
also suffer from the curse of dimensionality as the edge work-
load is actually a high-dimensional random vector containing
thousands of entries. Another approach to handle uncertainty
is robust optimization. This approach formulates uncertainty
using a set, and could offer strong performance guarantee as
long as the uncertainty is bounded by this set. However, finding
an appropriate set for robust optimization can be difficult in
practice. If we find a set that only covers a majority, (e.g.,
99%) of the workload patterns, then the robust optimization
approach cannot offer any guarantee for the out-of-bound
workload patterns. In contrast, if we find a set that covers all
the potential workload patterns, this set can be extremely large
because the workload uncertainty is heavy-tailed (see Table
I in Section III-C), drastically weakening the performance
guarantee of robust optimization. Further, in some situations,
it may not even be feasible to find such an uncertainty set.

We propose RO-RP, to explicitly account for workload

uncertainty in the edge server placement problem. RO-RP is
built on top of robust optimization, with newly developed
techniques to handle out-of-bound workload patterns. The
detailed techniques are described below:

1) Robust Optimization (RO): Our trace analysis in
Section ITI-B suggests that the edge workload exhibits
different patterns during workdays and holidays. Using
robust optimization, we can optimize server placement
based on multiple representative workload patterns.
As a result, we can offer a strong performance guarantee
as long as future workload patterns are within the convex
hull formed by these representative workload patterns.

2) Resource Pool Optimization (RP): However, robust
optimization alone cannot offer good guarantee when
the future workload patterns are outside of the above
convex hull. To overcome this challenge, we introduce
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a new concept called resource pooling factor. By
maximizing this resource pooling factor, the impact of
large workload bursts can be minimized.

In addition to a robust edge server placement solution, we
also propose server scheduling to reduce the energy consump-
tion of edge computing. Note that cumulative edge workload
has strong diurnal patterns (see Section III-A). Thus, turning
off some servers (or changing servers to power-saving mode)
during idle hours could potentially save significant amount of
energy cost. However, toggling servers between on/off states
may incur additional cost. We have explicitly accounted for
the switching cost in our server scheduling formulation. The
formulation and its evaluation are available in [18].

Finally, we evaluate our server placement policy based
on both real traces from Shanghai Telecom and synthetic
traces. Compared to the existing server placement policies,
RO-RP significantly reduces the workload rejection rate given
the same number of edge servers. To achieve close-to-zero
workload rejection rate, RO-RP requires 25% fewer edge
servers when compared with the state-of-the-art approach. We
also evaluate our server scheduling policy in [18]. Compared
to the strategy that turns on all servers at all times, server
scheduling could reduce energy consumption by 13%.

II. RELATED WORK

Prior work has studied how to deploy edge servers based on
workload distribution. However, the workload distribution may
not be accurate. Workload uncertainty may have a big impact
on the eventual network performance, but unfortunately has
not yet received much attention in the existing literature.

Many server placement proposals [1]-[9] have assumed that
each base station can be only associated with one edge cloud
in their formulations. With this assumption, many standard
algorithms, e.g., k-means clustering algorithm, set cover al-
gorithm, etc., can be used to design heuristic solutions for
the server placement problem. However, this formulation is
inherently non-robust to demand uncertainty. Whenever the
workload of a base station bursts, the edge cloud that serves
this base station has to bear the burden by itself. In fact, for a
given server placement, EC users do benefit from offloading
their job requests to multiple edge clouds [19], [20]. There
does exist literature [10]-[13] that allows serving workload
from the same base station in different edge clouds. However,
workload uncertainty is not considered therein.

To improve the robustness of edge server placement, [14]—
[17] studied how to account for server failures in their server
placement formulations. However, workload uncertainty is
inherently different from server failures, and may happen much
more frequently in real time.

One natural idea to deal with workload uncertainty is to
use robust optimization. This idea has been used to study
the service scheduling problem [21] in EC and the replica
server placement problem [22] in CDN. However, robust
optimization cannot offer any guarantee when the workload
is outside of the predicted set. Note that, unlike service

scheduling, server placement results cannot be adjusted based
on the real-time workload.

In addition to the server installation cost, energy also
accounts for a big portion of the cost for edge computing.
The energy-optimization literature on edge computing mostly
focuses on the edge/IoT devices [23]-[25], but not on the edge
servers. In this paper, we study how to perform server on-off
scheduling for edge computing to save energy cost. As far as
we know, this server scheduling problem was only studied in
data centers [26]-[29], but has never been explored in edge
computing. The biggest difference is that we need to account
for the collaboration among different edge clouds when we
study server scheduling in edge computing.

III. WORKLOAD ANALYSIS

The appropriate design of server placement policies requires
deep understanding of potential workload patterns of EC.
However, EC has not seen widespread deployment, and thus
there may not be any real data for its workloads. Instead,
we perform workload analysis based on Shanghai Telecom
dataset [1], [9], [30], [31], which includes the records collect-
ing about 3042 base stations and 6236620 user requests. We
believe the workload patterns of these communication records
can provide good estimate for the workload patterns of EC.

A. Observation 1: The cumulative workload has strong diur-
nal patterns

We study how the cumulative workload across all base
stations in Shanghai varies at different times of a day using
a consecutive of 30 days of data. As shown in Fig. 1(a), the
total number of requests are the lowest from midnight to about
6:00am every day. As people get up around 6:00-8:00am,
the requests rise and peak at around 6:30-7:30am. Then, the
requests are relatively consistent until 20:00pm, after which
the requests gradually decrease. Another observation from the
curves is that the number of requests on workdays (solid lines)
is generally higher than that on holidays (dashed lines). This
implies that one should not use workday’s workload patterns
to predict the workload patterns on holidays, and vice versa.

The strong diurnal patterns of edge workload motivates us
to perform server on-off scheduling for EC. The objective
is to reduce energy cost, without impacting on service quality.

B. Observation 2: The spatial workload patterns of different
days can be highly skewed and dramatically different

As shown in Fig. 2, we randomly pick a holiday and
a workday to study their workload patterns at the same
time of a day. Fig. 1(a) demonstrates the total workloads at
workdays and holidays are approximately the same for most
time. However, comparing the spatial workload distributions in
Fig. 2, we find the workload patterns are apparently different.
This observation suggests we should use multiple different
workload patterns to compute server placement solutions.

Another observation from Fig. 2 is that the workload
patterns are highly skewed, with much higher workload in
the central area of Shanghai. Hence, traffic agnostic server
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TABLE I
THE STATISTICS OF WORKLOAD AND INTER-ARRIVAL TIME OVER A TIME SPAN OF SIX MONTHS.
Max Average  std 99.999%  99.99% 99.9% 99% 90% 80% 70% 60% 50% 40%
Workload 40877 2314 3283 27144 10804 10800 10796 8857 3910 2097 1216 728 499
Inter-arrival time 13953857 7174 64180 7246866 2584387 584956 82414 10731 5001 3002 1990 1374 899
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(a) Number of Requests at different time of the (b) Hour-level workload variation for two con- (c) Hourly workload statistics for each base sta-

day during one month. secutive weeks.

tion over a period of 6 months.

Fig. 1. Data set analysis.
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(b) 12:00-14:00 on Workday
Fig. 2. Requests distribution at different days.

placement strategies may not perform well, which is verified
via simulation in Section VII-B.

C. Observation 3: The edge workload is highly bursty

To understand the burstiness of edge workload, we analyze
workload sizes and inter-arrival times of all requests at each
base station over a time span of six months. Table I summa-
rizes the average, standard deviation and percentile values of
these two metrics. Note that the inter-arrival time is heavy
tailed, meaning that it is possible for a base station to receive
a large request after being idle for a long period of time.

Since edge workload is highly bursty, accurately predicting
edge workload can be very difficult. For example, we can use
historical workday/holiday patterns to predict future workload.
For the ¢-th hour every day, we could compute the following

M 4
_ () —w (¢
Z’”‘iﬁ’:(w), (1:)’"( )l, where

wyy, (t) is the total workload of the m-th base station in the ¢-th
hour of the day, and w,, (t) is the total workload of the mn-th
base station in the ¢-th hour seven days ago. From Fig. 1(b), the
workload variation ratio can be as large as 70%. Hence, using
historical patterns to predict future workload can be inaccurate.

We are also interested in the relationship between the
average workload and the workload uncertainty. For every base
station and every hour in a week, we collect a sequence of
workload values over 6 months with one value per week. We
then compute the average value and the standard deviation for
every workload sequence, and plot them in Fig. 1(c). From
this figure, we can see that the workload’s worst-case standard
deviation grows approximately linearly with respect to its
average value. However, the range of the standard deviation

workload variation ratio: V; =

values is pretty large, and thus there may not be a rule of
thumb to accurately predict the workload uncertainty.

The above analysis demonstrates that edge workload is
highly variable. Thus, how to handle workload uncertainty
becomes a primary focus in this paper.

IV. MODEL

We study edge server placement from a service provider’s
aspect. A service provider (SP) is responsible for managing the
base stations, the central cloud and the edge servers (see Fig.
3(a)), with an objective to provide ubiquitous communication
and computation services to its users. Users access SP’s
network through base stations, usually via wireless links. The
base stations and the central cloud are typically interconnected
through wired links. As we go into the 5G era, when millions
of devices connect to the network, and data from each device
floods in, edge computing also becomes critical to provide low
latency, high reliability, and immense bandwidth.

In general, edge computing consists of two stages: server
placement and service scheduling. For server placement, the
SP needs to determine where to deploy servers and how many
servers to deploy. Typically, edge servers are co-located with
base stations. Server placement usually happens at the plan-
ning stage. For service scheduling, the SP is responsible for
routing users’ edge computing requests to nearby edge servers
in real time. In this paper, we focus on server placement.
Note that running edge servers may incur high energy cost.
To reduce energy consumption, we introduce an additional
stage, i.e., server on-off scheduling, to make an on-off schedule
for edge servers based on predicted workloads. The overall
workflow of edge computing is depicted in Fig. 3(b).

The stages that this paper focuses on
roN (K) Server Server On-off
() ‘:Q\‘(\ )—__E'Ei Placement Scheduling
| tR))
. DA e |
N 0 Service
0 = ((A)) Scheduling

(a) Edge computing network. (b) Overall workflow.

Fig. 3. Overall Architecture.
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A. Mathematical Models

Let {B1, Ba, ..., By} denote the set of base stations (BSs)
in an 5G network, where M is the total number of base
stations. Assume time is slotted. w,, (t) denotes the total edge
computing workload of BS B,, at slot ¢t. The workloads
at different base stations form a workload vector w(t) =
[wp(t),m = 1,2,...,M]. Since the edge workload wy, (t)
has stringent latency requirements, such workload can be only
processed by the edge servers deployed at BS B,, or nearby
BSs of B,,. In this paper, we use €, to denote the set of BSs
whose edge servers can serve the workload of the BS B,,.
Remark on 2,,: One can define (2, using different ap-
proaches, including latency requirement, hop-count require-
ment, distance requirement, etc. The methodology in this paper
works for all the possible definitions of €,,.

1) Server Placement: Server placement typically happens
at the planning stage. Once the edge servers are deployed,
it may not be easy to change the server deployment. Hence,
server placement must be robust against the potential workload
variations. The easiest approach to deal with workload varia-
tions is to over-provision edge servers. However, this approach
increases both equipment cost and energy cost. In this paper,
given a historical trace of workload vectors, we study how to
assign a total number of K servers to each BS, such that

S1+ So+ -4+ Sy = K, where S,,,’s are integers, (1)

where Sy, is the number of edge servers deployed at BS B,,.

2) Service Scheduling: Service scheduling happens at the
real time stage. At time ¢, for the workload w, (t) at the BS
B,,, the objective of service scheduling is to determine the
fraction uy,, (t) of the workload w,, (t) that is assigned to the
base station B,, € (),,. Clearly,

{ Y8, cq,, Umn(t) =1, form=1,2,.. M,

0 < Umn(t) <1 and umy(t) =0, for B, & Q. @)

3) Server On-off Scheduling: Server on-off scheduling hap-
pens in-between server placement and service scheduling.
Fig. 1(a) suggests that the cumulative edge workload has daily
peaks and troughs. Server placement needs to account for
the daily peaks. However, keeping all the servers always on
incurs significant energy cost, especially during idle hours.
Let S(t) = [Sm(t),m = 1,2,...,M], where S,,(t) is the
number of active servers at the BS B,,, at time ¢. The objective
of server on-off scheduling is to reduce energy cost, without
impacting on users’ service quality. Clearly,

Sm(t) < S, ¥Ym=1,2,..., M and t. 3)

B. Performance Metrics

While we design server placement and server on-off
scheduling strategies, we are interested in optimizing the
following three performance metrics.

1) Rejected Workload: When edge servers run out of re-
sources to serve some portion of edge workload, such edge
workload is considered as rejected. (Offloading this work-
load to the central cloud may violate latency requirement.)

This could happen when the real-time workload w(t) =
[wy (t), wa(t),..., war(t)] bursts at some BSs. Given the num-
bers of active servers S(¢) and the workload vector w(¢), the
total amount of rejected workload can be computed by

M M
min max < 0, Wyn (8)Umn (t) — CSn(t
i, > { 3wty (0 ()} @
st umn(t) satisfy (2),
where C is the capacity of one server. Note that

max {0, Zﬁf{:l Wy, (E) U () — CSn(t)} is the total rejected
workload at the BS B,. Solving (4) gives the minimum
possible amount of workload to be rejected.

2) Number of Servers Required: From service providers’
aspect, rejecting EC requests is highly undesirable, because
they may lose customer loyalty. Then, another important
metrics arises, i.e., what is the minimum number of servers
required in order to guarantee zero workload rejection rate?
Certainly, this number depends on the server placement strat-
egy and the workload patterns. In Section VII-B, we will use
extensive simulation to obtain an estimate of this metric for
different server placement strategies.

3) Cost: The cost of edge servers consists of two parts:

e Server running cost E, + F,, - x, where E, is the energy
cost of running an idle server for one time slot, and F,,
is the energy cost per workload unit. Note that E, may
account for over 50% of the energy cost in a server [32].

o Switching cost F;, which models the cost of toggling a
server between on/off states'.

Note that the total energy cost of all the workload equals
E, Z%Zl >+ W (t), which is out of our control. Hence, in
this paper, we mainly focus on the idle-server cost and the
switching cost, which in total can be calculated as

M

W= Z Z (E X Sy (t) + Es X (S (t) — S (t — 1))*) 5)
m=1 t

where 7 = max{0, z}. Clearly, if we choose not to perform

server on-off scheduling, then the switching cost becomes

zero, but the running cost increases.

V. SERVER PLACEMENT

The primary objective of server placement is to reduce the
workload rejection rate. Since this metric is closely related to
service scheduling, our server placement strategy will account
for the effect of service scheduling.

A. A robust joint optimization approach

Considering edge workload exhibits different patterns at
different time, our first idea is to use robust optimization
to compute a server placement solution. Specifically, given
a sequence of historical workload vectors, we pick multiple
representative workload vectors using the following steps:

I As stated in [26], if only energy cost matters, then E is about the cost of
running a server for a few seconds to several minutes; if increased wear-and-
tear is accounted for, then E/s becomes on the order of the cost of running a
server for a hour. We use the latter to measure the switching cost Fs.
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Step 1 Divide historical workload vectors into L groups
such that the workload vectors in the same group
are all 1) from workdays or holidays, and 2) from
the same time period (e.g., 8:00-11:59am) of a day.

Step 2 Compute an average workload vector w! =
[wl  m = 1,2, ..., M] for the I-th group of workload
vectors”. Note that the following analysis also works
for other choices of workload vectors.

In total, we obtain L workload vectors.

For each workload vector w!, we introduce service schedul-
ing variables u! = [ul m,n = 1,2,..., M] satisfying (2).
Then, we jointly optimize the server placement variables
S = [Spm,m = 1,2,...,M] satisfying (1) and the service
scheduling variables [u', u?, ..., u”].

For each workload vector w' and the corresponding service
scheduling variables ul, it is easy to obtain the total workload
allocated to the BS B,, ie., Zﬁf:l wh,ul . To reduce the
likelihood of workload rejection, we impose the following
constraint that restricts the edge server utilization to be less

than 3 for any BS B,, and any workload vector w':

M
Z wl b, < 8,08, for any B, and w'. (6)

m=1

Then, the overall formulation is given as

min B
S,ut,B
s.t. S satisfy (1), (7

S, ul, B satisfy (2)(6) for | =1,2, ..., L.

We denote the optimal value of (7) by 5*.

Understanding the drawback of (7): When future workload
vectors are bounded by the convex hull of [w!,w?, ..., w!],
the above robust optimization based formulation (7) can offer
strong performance guarantee (see [18] for more detailed
analysis). However, some future workload vectors can be out
of bound, owing to the fact that edge workload is highly
bursty. Certainly, one can increase the convex hull by scal-
ing up the representative workload vectors [w!, w?, ..., w’].
Unfortunately, 8* will also increase, making the performance
guarantee of robust optimization weaker. Further, if 5* > 1,
then the performance guarantee becomes useless.

B. Handling Out-of-bound Workload with Resource Pooling

Intuition: We first introduce the concept of resource pool. For
the workload at the BS B,,, its resource pool is defined as the
total amount of server resources that can serve the workload,
which equals to ) B, cq,, On- To understand how resource
pooling helps mitigate the impact of out-of-bound workload,
we consider the motivation example in Fig. 4. The predicted
MEC workloads at the base stations A and B are both 10,

2We have also tried using the component-wise max workload vector
to compute a server placement solution. However, our simulation results
in Section VII-C1 cannot give any conclusive answer that one option is
better than another. Hence, one may use a different approach to compute
representative workload vectors.

while the real time workloads turn out to be 8 and 12. If we
deploy 10 units of computing resources at A and B each (see
Fig. 4(a)), then in real time, 2 units of B’s workload will be
rejected owing to the fact that 1) B’s MEC servers are already
fully utilized, and thus cannot serve B’s burst; 2) A is too far
from B, and thus cannot serve B’s burst either. On the other
hand, if we deploy computing resources at the base stations C
and D (see Fig. 4(b)), the computing resources of C' and D
can serve the workloads from both A and B, because C and
D are both within an acceptable distance from A and B. As
a result, the resource pools of both A and B increases from
10 to 20. Then, as B’s workload bursts from 10 to 12, we
can offload 2 units of workload from the edge cloud D to the
edge cloud C. With an increase resource pool, the workload
from the base station B will not be rejected any more.

(D) ! (c) Resource!
(¢g) AC (( )) (cg) AC Pooling ! (g2
o el Bwdl B

(a) Small resource pool. (b) Large resource pool.

Fig. 4. Motivation example of resource pooling.

Formulation: Motivated by the above example, we introduce
a resource pooling factor 7, such that

L
nmax{w,,} < Y Sn. ®)
N Bn€Qm

Then, we compute the server placement result by maximizing
the resource pooling factor 7:

Maximize resource pooling factor:

max n
S,ul,n (9)
s.t. S, n satisfy (1)(8),

S, ul, B* satisfy (2)(6) for [ =1,2,..., L.

Note that our server placement policy involves two steps: 1)
compute [5* using the robust optimization formulation (7);
2) optimize resource pooling based on (9). Hence, we will
also use RO-RP to represent our server placement policy. The
resource pooling step is critical in handling the out-of-bound
workload. The detailed analysis is available in [18].

C. Reduce Algorithmic Complexity for Server Placement

We compute server placement results by solving (7) and (9).
However, both (7) and (9) are integer programming problems,
which are computationally expensive. In fact, we have tried
solving (9) directly based on the Shanghai Telecom dataset
with 3042 base stations, but unfortunately the state-of-the-art
integer programming solver, Gurobi [33], cannot finish with a
solution even after running a few hours.

To reduce computational complexity, we adopt a relaxing
and rounding approach. Specifically, we first allow the server
placement variables S to take fractional values. Then, both
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(7)* and (9) can be converted to linear programming problems,
which can be solved in polynomial time. After obtaining a
fractional server placement solution of S, we can then round
the fractional solution to an integer solution. Note that we need
to ensure that (1) is satisfied after rounding.

Let S* =[S}, 53, ...,5%,] be a fractional server placement
solution. We have tried 5 rounding schemes based on different
intuitions, and finally adopt the Smallest Resource Pool First
approach, i.e., the base stations with smaller resource pools
are given higher priority to round up its fractional solution.
More analysis and evaluation results are available in [18].

VI. SERVER SCHEDULING

This section and its evaluations are available in [18].

VII. EVALUATION
A. Introduce the Trace for Evaluation

1) Shanghai Telecom’s Real Communication Records: We
use this trace to compare our server placement and scheduling
solution against previous approaches. (Details in Section III)

2) Synthetic Trace: It was shown in Section III-C that edge
workload is hard to predict accurately. Hence, our solution
must be robust against potential workload bursts. Unfortu-
nately, the historical real traces may not offer a comprehensive
coverage over the burst patterns. Hence, we construct synthetic
traces to evaluate solution robustness. The construction of our
synthetic traces is provided in [18].

B. Compare Different Server Placement Policies

We group existing server placement policies into three
categories and evaluate them using the real trace.
Traffic-agnostic policies: This policy does not use any work-
load information for server placement. We evaluate the fol-
lowing policies in this category:

1) Random: Place K servers at randomly chosen BSs.

2) Clustering: Use k-means algorithm to group BSs into

k clusters. Let sgc) be the number of BSs in the i-th
©

cluster. Place K W servers at the centroid of the
i-th cluster. T

3) Uniform: Divide the geographical area into fixed-sized

zones. Let sl(.U) be the number of BSs in the i-th zone.
)

Place K ﬁ servers at the centroid of the i-th zone.
i=15i

Traffic-aware but uncertainty-agnostic policies: The two

policies compute server placement based on a predicted work-

load vector, but do not account for the workload uncertainty.

1) Traffic-aware without load balancing (TwithoutLB):
In this policy, the workload at each BS can be only allo-
cated to the nearest BS with edge servers. Many existing
server placement policies fall into this category [1]—
[9]. In this paper, we use k-means algorithm to group
BSs into k clusters, and assign all the workload in each

3The constraints (6) contains a multiplicity term Sy, 3. To convert (7) into
a linear programming problem, we need to substitute Sy, by S, = Spf3 in
(6), and replace (1) by ZM Sp = KB in (7).

m=1

cluster to the centroid of this cluster. Let [; be the total
workload of the BSs in the i-th cluster. Place K E’-"li

i=1

l;
servers at the centroid of the ¢-th cluster.

2) Traffic-aware with load balancing (TwithLB): In this
policy, the workload at each BS can be load balanced
to the close-by BSs. This setting was also adopted in
[10]-[13]. Here, we compute a server placement solution
by solving (7) with only one workload vector. (We use
historical average workload vector in the evaluation.)

Traffic and uncertainty-aware policies: This is our server
placement strategy proposed in Section V (namely RO-RP).

We use two weeks of real traces to evaluate the workload

rejection rate for different server placement policies. In Fig. 5,
we fix the total number of servers as 8000. Apparently,
our approach achieves the lowest workload rejection rate.
In Fig. 5(c), we vary the number of servers from 7000 to
12000, and study how many servers are required in order
to achieve close-to-zero workload rejection rate. Under our
policy, approximately 7500 servers are required. In contrast,
the second best option requires about 10000 servers.

C. Understand Different Design Choices of RO-RP

1) Average workload vector vs. component-wise max work-
load vector: In Section V-A, we use the average workload
vector as the representative workload vectors. Another option
is to use the component-wise max workload vector. There may
not be a conclusive answer that one is better than another. We
compare these two options using different synthetic traces.
As shown in Fig. 6(a), using average workload vector yields
lower workload rejection rate for one trace, but leads to higher
rejection rate for the other one.

2) Understanding the effect of robust optimization and
resource pooling: Our server placement policy utilizes both
robust optimization and resource pooling to improve its ro-
bustness against workload uncertainty. To understand the con-
tribution of each technique, we evaluate four options below:

1) Robust optimization+resource pooling (RO-RP): Our

server placement strategy proposed in Section V.

2) Robust optimization only (RO-only): Only solve (7)

for a server placement solution.

3) Resource pooling only (RP-only): Use only one work-

load vector (e.g., historical average) to solve (7) & (9).

4) Not handling workload uncertainty (TwithLLB): Use

only one representative workload vector to solve (7).
From Fig. 6(b), we can see that both techniques help reduce
the workload rejection rate, and the performance is the best
when both techniques are enabled.

VIII. CONCLUSION

In this paper, we propose a new methodology to design
server placement and server scheduling policies that are robust
to workload uncertainty. This methodology utilizes robust
optimization to provide guarantee for workloads that are
within a predetermined uncertainty set, and performs resource
pool optimization to improve service quality for out-of-bound
workloads. Simulation results demonstrate the effectiveness of
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Fig. 6. Different design choices of our server placement policy.

this methodology. From a service provider’s aspect, the result-

ing

server placement policy reduces the number of required

edge servers by about 25% compared with the state-of-the-art
approach and the resulting server scheduling policy reduces
the energy consumption by about 13%.
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